Topics in the June 2006 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2006-J-2:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Material Properties (Polymers, Liquid Crystals, Metals, Ceramics)

2006-J-3:

• Nuclear and Radiation Chemistry

2006-J-4:

• Bonding - MO theory (larger molecules)

2006-J-5:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Lewis Structures
- VSEPR

2006-J-6:

- Gas Laws
- Thermochemistry

2006-J-7:

- Thermochemistry
- First and Second Law of Thermodynamics

2006-J-8:

- Thermochemistry
- First and Second Law of Thermodynamics

2006-J-9:

- Chemical Equilibrium
- Equilibrium and Thermochemistry in Industrial Processes

2006-J-10:

- Material Properties (Polymers, Liquid Crystals, Metals, Ceramics)
- Types of Intermolecular Forces

2006-J-11:

Electrochemistry

2006-J-12:

• Nitrogen Chemistry and Compounds

The University of Sydney

CHEMISTRY 1A - CHEM1101

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2006

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 23 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 15, 20, 23 and 28 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
14	6			
16	6			
17	5			
18	5			
19	6			
21	5			
22	5			
24	2			
25	4			
26	8			
27	4			
Total	56			
Check	total			

• In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate.	Marks 6
(a) Hund's rule	
(b) electron offinity	
(b) electron annity	
(c) nuclear fusion	
(d) diamagnetic	
(e) p-type semiconductor	
(1) π bond	

• Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.	Marks 3
$^{63}_{28}$ Ni $\rightarrow ^{63}_{29}$ Cu +	
$^{53}_{26}$ Fe + $^{0}_{-1}$ e \rightarrow	
$^{28}_{14}\text{Si} + ^2_1\text{H} \rightarrow ^1_0\text{n} +$	
• Calculate the energy (in J) and the wavelength (in nm) of the photon of radiation emitted when the electron in Be ³⁺ drops from an $n = 3$ state to an $n = 2$ state.	3
Energy: Wavelength:	

CHEM1101

CHEM1101	2006-J-4	June 2006	22/05(a)
• The N ₂ ⁺ ion plays a <i>Borealis</i>).	a role in the colourful display	of the Northern Lights (the Aurora	Marks 5
The molecular orbi provided shows the for the valence elec Indicate on this dia electronic configura arrow notation for o	tal energy level diagram e energies of the orbitals etrons in the N_2^+ ion. gram the ground state ation of N_2^+ using the electron spins.	Energy Energy Energy $\pi^* \sigma^*$ Energy $\pi^* \sigma^*$ Energy $\pi^* \sigma^*$ Energy Energy $\pi^* - \sigma^*$ En	
Calculate the bond Indicate the lowest final states of the e	order of N ₂ ⁺ . energy electron excitation in lectron undergoing the excita	this ion by identifying the initial and tion.	
The line at 3914 Å to N_2^+ returning to molecular orbitals	(391.4 nm) in the emission s its ground state. Calculate th involved in this transition.	pectrum of the Aurora Borealis is due e energy gap (in eV) between the	e
	Answ	ver:	

Marks

3

• With respect to the molecule sketched below, answer the following questions concerning the selected atoms indicated by arrows as **A**, **B** and **C**.

Δ	

Selected	Number of Lone	Number of σ Bonds	Geometry of σ Bonds about
Atom	Pairs about the	associated with the	the Selected Atom
	Selected Atom	Selected Atom	
Α			
В			
С			

• Identify two factors that explain the origin of the discrete energy levels of electrons in atoms?

2

CHEM1101	2006-J-6		June 20	06	22/05(a)
• At room temperatur Calculate the molar pressure is 0.020 at	e and pressure (RT volume of the sam m and the temperat	°P), 1 mole o le ideal gas i lure is 200 K	f an ideal gas oo n the stratospher	ccupies 24.45 L. re, where the	Marks 2
		Annuar			_
• Two blocks of meta insulated environme	l, as shown in the tent.	table below,	are placed in int	timate contact in an	4
	Metal	Iron	Copper		
	Mass (g)	30.0	20.0		
	Initial <i>T</i> (°C)	0.0	100.0		
	$c (J g^{-1} K^{-1})$	0.450	0.387		
In which direction v	will the heat flow?	Write "from	Fe to Cu" or "f	from Cu to Fe".	
					-
What is the final ter	nperature of the sy	stem?			-
					4
		Answer			

Calculate the molar enthalpy of combustion of ethylene (C₂H₄) using bond dissociation
 S

Data:	Bond	Bond enthalpy (in kJ mol ⁻¹)	Bond	Bond enthalpy (in kJ mol ⁻¹)
	С–Н	413	C=C	614
	O–H	467	C=O	799
			O=O	498

Answer:

The heat of combustion of ethane (C_2H_6) is -1560 kJ mol⁻¹, while that of ethanol (C_2H_5OH) is -1367 kJ mol⁻¹. Comment on which of ethylene, ethane and ethanol is the most efficient fuel.

• Silicon tetrachloride (SiCl ₄) is produced annually on a kilotonne scale for making transistor-grade silicon. It can be made directly from the elements (reaction 1), or, more cheaply, by heating sand and graphite with chlorine gas (reaction 2). If water is present, some SiCl ₄ may be lost in an unwanted side-reaction (reaction 3).				Marks 5
1. $Si(s) + 2Cl_2(g) \rightarrow SiCl_4(g)$				
2. $SiO_2(s) +$	$2C(s) + 2Cl_2(g) \rightarrow$	$SiCl_4(g) + 2CO(g)$		
3. SiCl ₄ (g) \dashv	$+$ 2H ₂ O(g) \rightarrow SiO ₂ (s)) + 4HCl(g)	$\Delta H^{\circ} = -139.5 \text{ kJ mol}^{-1}$	
Calculate the he	ats of reaction of react	ions 1 and 2.		
	Compound	$\Delta H^{\circ}_{\rm f} / \text{kJ mol}^{-1}$		
	SiO ₂ (s)	-910.9		
	HCl(g)	-92.3		
	H ₂ O(g)	-241.8		
	CO(g)	-110.5		
$\Delta H^{\circ}_{(\text{reaction 1})} =$		$\Delta H^{\circ}_{(\text{reaction 2})} =$		
Write down the new reaction for this ne	w reaction that is the sw w reaction?	um of reactions 2 and	3. What is the heat of	-
Reaction:			$\Delta H^{\circ} =$	1

•	The thermal decomposition of lithium peroxide produces oxygen.	Marks 2
	$2Li_2O_2(s) \implies 2Li_2O(s) + O_2(g)$	
	A 1.0 g sample of Li_2O_2 was placed in a closed container and heated to a temperature, where some, but not all, of the Li_2O_2 decomposes. The experiment is then repeated using a 2.0 g sample, heated to the same temperature in an identical container. How does the pressure of $O_2(g)$ produced vary between these two experiments? Explain.	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1101	2006-J-10	June 2006	22/05(a)
• List the following	five solids in order of incre NaCl, H ₂ , CH ₄ ,	asing melting points. H ₂ O, SiO ₂	Marks 4
Briefly explain you	ur ordering based on the typ	bes of forces that are involved.	
List those that are	electrical conductors when	molten. Briefly explain your answers.	,

CHEM1101	2006-J-12	June 2006	22/05(a					
• Identify four features of a compound that would make it a good explosive.								

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1101 - CHEMISTRY 1A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions											
Fraction	Prefix	Symbol									
10^{-3}	milli	m									
10 ⁻⁶	micro	μ									
10^{-9}	nano	n									
10^{-12}	pico	р									

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10 ⁶	mega	М
10 ⁹	giga	G

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{14} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$	$k = A e^{-Ea/RT}$ $\ln[A] = \ln[A]_{o} - kt$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$	$k = A e^{-Ea/RT}$ $\ln[A] = \ln[A]_{o} - kt$ $\ln \frac{k_{2}}{dt} = \frac{E_{a}}{2} \left(\frac{1}{2} - \frac{1}{2}\right)$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$	$k = A e^{-Ea/RT}$ $\ln[A] = \ln[A]_{o} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Radioactivity	$k = A e^{-Ea/RT}$ $\ln[A] = \ln[A]_{o} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$ Thermodynamics & Equilibrium
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Radioactivity $t_{1/2} = \ln 2/\lambda$	$k = A e^{-Ea/RT}$ $\ln[A] = \ln[A]_{o} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$	$k = Ae^{-Ea/RT}$ $\ln[A] = \ln[A]_{0} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_0/N_{\text{t}}) = \lambda t$	$k = Ae^{-Ea/RT}$ $\ln[A] = \ln[A]_{0} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Radioactivity $t_{1/2} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_0/N_{\text{t}}) = \lambda t$ $^{14}\text{C age} = 8033 \ln(A_0/A_{\text{t}})$	$k = Ae^{-Ea/RT}$ $\ln[A] = \ln[A]_{0} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $K_{p} = K_{c} (RT)^{\Delta n}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Radioactivity $t_{\frac{1}{2}} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_0/N_t) = \lambda t$ $^{14}\text{C age} = 8033 \ln(A_0/A_t)$ Polymers	$k = Ae^{-Ea/RT}$ $\ln[A] = \ln[A]_{o} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $K_{p} = K_{c} (RT)^{\Delta n}$ Mathematics
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $p = kc$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Radioactivity $t_{\frac{1}{2}} = \ln 2/\lambda$ $A = \lambda N$ $\ln(N_0/N_t) = \lambda t$ $^{14}C \text{ age} = 8033 \ln(A_0/A_t)$ Polymers $R_{\text{g}} = \sqrt{\frac{nl_0^2}{6}}$	$k = Ae^{-Ea/RT}$ $\ln[A] = \ln[A]_{0} - kt$ $\ln\frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $K_{p} = K_{c} (RT)^{\Delta n}$ Mathematics $\text{If } ax^{2} + bx + c = 0, \text{ then } x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 hydrogen H																	2 нелим Не
	1.008	4]										5	6	7	8	9	4.003
	LITHIUM	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE	NEON Ne
	6.941 11	9.012 12	-										10.81	12.01 14	14.01	16.00	19.00 17	20.18 18
	^{sodium} Na 22.99	MAGNESIUM Mg 24.31											ALUMINIUM Al 26.98	SILICON Si 28.09	PHOSPHORUS P 30.97	SULFUR S 32.07	CHLORINE Cl 35.45	ARGON Ar 39.95
_	19 POTASSIUM	20 calcium	21 scandium	22 TITAN	2 23 IUM VANADIU	24 снязомии	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 zinc	31 GALLIUM	32 GERMANIUM	33 ARSENIC	34 selenium	35 BROMINE	36 KRYPTON
	K 39.10	Ca 40.08	Sc 44.96	T 47.8	i V 88 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
	37 RUBIDIUM	38 strontium	39 yttrium	4(ZIRCON) 41 NIUM NIOBIUM	42 molybdenum	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 indium	50 TIN	51 antimony	52 TELLURIUM	53 IODINE	54 xenon
	Rb 85.47	Sr 87.62	Y 88.91	Z I 91.2	r Nb 22 92.91	Mo 95.94	Tc [98.91]	Ru 101.07	Rh 102.91	Pd 106.4	Ag 107.87	Cd 112.40	In 114.82	Sn 118.69	Sb 121.75	Te 127.60	I 126.90	Xe 131.30
	55 caesium	56 barium	57-71	72 hafni	2 73	74 TUNGSTEN	75 RHENIUM	76 05MIUM	77 IRIDIUM	78 platinum	79 GOLD	80 mercury	81 THALLIUM	82 Lead	83 bismuth	84 POLONIUM	85 astatine	86 radon
	Cs 132.91	Ba 137.34		H 178.	f Ta .49 180.9	W 183.85	Re 186.2	Os 190.2	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	TI 204.37	Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn [222.0]
	87 francium	88 radium	89-103	B 10 RUTHERFO	4 105 DIRDIUM DUBNIUM	106 seaborgium	107 bohrium	108 hassium	109 meitnerium									
	Fr [223.0]	Ra [226.0]		R [26	f Db 1] [262]	Sg [266]	Bh [262]	Hs [265]	Mt [266]									
		57	7	58	59	60	61	62	63	64	65	6	66	67	68	69	70	71
L	ANTHANID	ES LANTHA		Ce	PRASEODYMIUM Pr	NEODYMIUM Nd	PROMETHIUM Pm	SAMARIUM Sm	EUROPIUM EU	GADOLINIU GADOLINIU	M TERBIU	M DYSP	rosium i Dy	ногитим	ERBIUM	THULIUM Tm	ytterbium Yb	LUTETIUM
		138.	91 14	0.12	140.91	144.24	[144.9]	150.4	151.96	157.25	5 158.9	93 16	2.50 1	.64.93	167.26	168.93	173.04	174.97
	ACTINIDES	S ACTIN) (им тн	90 orium	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 AMERICIUM	96 curium	97 BERKELL	IUM CALI	98 fornium ei	99 NSTEINIUM	100 fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM

Bk

[247.1]

Cf

[252.1]

Es

[252.1]

Fm

[257.1]

Md

[256.1]

No

[259.1]

Lr

[260.1]

Cm

[247.1]

Am

[243.1]

PERIODIC TABLE OF THE ELEMENTS

22/05(b)

ACTINIDES

Th

232.04

Ac

[227.0]

Pa

[231.0]

U

238.03

Np

[237.0]

Pu

[239.1]